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Abstract—The article draws the distinction between homogeneous and pure homogeneous de-
formation. In the latter mode, an orthogonal triad can be identified (the principal axes). which
remain orthogonal throughout the deformation. An appropriate strain measure in such processes
is that of logarithmic strain. Furthermore, its material derivative equals the rate of deformation
tensor. In homogeneous processes, the deformation gradient tensor is unsymmetric, and there
is no triad which remains orthogonal throughout. This often leads to a description of the actual
deformation by means of the polar decomposition theorem. The material derivative of the tensor
logorithm is no longer simply related to the rate of deformation tensor, and this is exemplified
herein. As a result of material rotation the stress components will vary, and constitutive equa-
tions which involve stress rate must be formulated to compensate for the rotation. A number
of objective stress rates are examined herein, and employed in a constitutive equation describing
a hypoelastic solid. The effect of stress rate on the evolution of stresses in the deforming solid
is demonstrated for the case when the body undergoes simple (rectilinear) shear.

INTRODUCTION

In plasticity any strain determined solely from the initial and final shape of any ob-
servable element cannot be regarded as a state parameter. The material statc depends
not only on the change in shape, but also on the path along which the shape evolved.
For rate-independent solids, the assumption of isotropic hardening can lead to a simple
relationship between the current representative stress (a measure of the size of the
yield surface) and the integral of the representative strain increment, [ dé. As is well
known d€ is a multiple of the second invariant of the plastic strain increment tensor.
This is an Eulerian description of the strain, since the components are measured with
respect to the current configuration. The strain increment comprises an elastic and a
plastic part, and Nemat-Nasser {1, 2] has argued the case for an additive decomposition.
The point is not pursued here.

In sheet metal forming processes, the strain (strain increment) is typically evaluated
from the measurement of a grid marked on the surface of the workpiece. The surface
element over which the measurements arc made is usually regarded as plane. Fur-
thermore, since the sheet is thin, it is assumed no quantities vary through the thickness
and the normal to the sheet surface is a principal direction. In order to obtain a simple
measure of strain, the investigator is anticipating that the straining will occur by
homogeneous deformation over the region of a single grid element. Hence a square
grid will deform into a parallelogram and a circle into an ellipse. The assumption of
linear mapping is also embodied in theoretical studies of the geometry of deformation,
it is merely a matter of scale as to whether the domain of inspection is considered
infinitesimal or finite in extent. This presents no problems from a theoretical point of
view, but in practice the grids are finite and inhomogeneous straining may arise within
the boundary of a single grid.

If the straining takes place by pure homogeneous deformation (pure stretch), the
deformation gradient tensor is symmetric and there exists within a deforming cell an
orthogonal triad which remains orthogonal throughout the deformation history. Without
ambiguity this triad represents the principal axes, and they remain fixed in spacet while
all other line elements rotate. From the components of the deformation gradient tensor,

t The superposition of a rigid body rotation on the deformation by some other agency is not considered.
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the orientation and magnitude of the principal stretches is readily determined. The rotal
representative strain is then a function of the natural logarithm of the principal stretches.
In pure stretch processes, it is sufficient to measure the initial and final shape only of
a grid element in order to evaluate the principal stretches. It is for the case of pure
stretch that Hill [3-5] proposcd the (ensor logarithm as a conjugate strain measure in
his work on constitutive inequalities.

When the straining occurs by homogeneous deformation the deformation gradicent
tensor, say F, is unsymmetric. However, an orthogonal triad can be identified in the
initial configuration (the ground state) which is also orthogonal in the final (current)
configuration. It must be emphasized that this triad has not remained orthogonal
throughout the deformation history, it undergoes rotation and it is a« moot point whether
the name principal should be ascribed to this triad.

When F is unsymmetric, this causes some problems in the evaluation of the strain,
and recourse is made to techniques to devise a symmetric tensor. The polar decom-
position theorem allows F to be expressed as either F = R - Uor F = V - R. The
tensors U and V represent pure deformation and are referred to as the right and left
stretch tensor respectively, while R provides a rigid body rotation and R” = R~'. It
follows that U? = F” - Fand V? = F - F’, and it is dcemed that the eigenvectors of
V? define the orientation of an orthogonal triad in the current configuration and those
of U? define the orientation of the same triad in the initial configuration. To the as-
sociated strain ellipsoids, Hill [4, 5] has ascribed the name Eulerian (for current) and
Lagrangian (for initial).

Real deformation processes do not occur, in general, by some combination of pure
stretch followed by a rigid body rotation or vice versa. The components of F are a
function of both time and the components of the spatial velocity gradient tensor, L,
and in turn these components are a function of time and spatial position. However, in
principle if F is known, in the above sense, the deformation is uniquely defined. It
follows from the polar decomposition theorem that either of the pure stretch tensors
U and V when acting alone will give the same shape change as F. The same change in
shape does not imply identical straining modes. Sowerby and Chakravarti [6] have
demonstrated the pure homogeneous deformation (pure stretch) processes minimise
the accumulated representative strain, €, vis a vis the homogeneous deformation mode
(unsymmetrical F) which produces the same shape. This fact would not be realised
through any of the aforementioned schemes which produce a symmetric tensor.

The difference in representative strain when the actual deformation, F, is replaced
by the process F = R - U = V - R depends on the extent of the deformation. For
infinitesimal steps, no distinction will be revealed, because the antisymmetric part of
the deformation is ignored when defining infinitesimal strains. In numerical schemes
such as finite element methods, the error is likely to be negligible for small deformation
steps. In fact, it may not be necessary to attempt to distinguish between homogeneous
deformation and pure stretch in practical sheet metal forming operation, at least as far
as representative strain is concerned. A simple calculation, for the simple shear process
and also when the shape change is achieved by pure stretch, demonstrates there is
about 10% difference in the representative strain based on a shear displacement of 1.5.
This would represent a large strain in sheet forming and an accumulated € of about
unity. It will be realised that in a real forming process the straining path is usually
unknown, and therefore if an estimate of the strain is required the only recourse is to
assume a pure stretch mode.

As already mentioned, when the process is one of pure stretch, the logarithmic
(natural) strain is an appropriate strain measure. Furthermore, for the pure stretch
mode the material derivative of the tensor logarithm, i.e. (In U)’, is equal to the rate
of deformation tensor, D. Such a simple expression does not hold when the deformation
gradient tensor, F, is unsymmetric, but Gurtin and Spear [7] derived a relationship for
arbitrary homogeneous deformation modes. Similar results are developed in the present
article, but a different analytical approach is adopted. The utility of the resulting expres-
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sions in any numerical scheme has still to be demonstrated. The expressions involve
the spin of the triad of the Eulerian and Lagrangian cllipsoids (see earlier). The spins
of the ellipsoids have been determined by Hill (4, 5] when an infinitesimal deformation
step is superimposed on finite stretches, and similar calculations are repeated here but
from a different standpoint.

In finite deformation different ‘‘rotation’’ tensors can be defined. Consequently a
wide choice of objective stress rates is available for adoption in constitutive equations.
It is of interest to ascertain the influence of the stress rate on the evolution of the
stresses in a deforming body. For this purpose the stresses are derived for a hypoelastic
material undergoing finite rectilinear (simple) shear. Depending upon the stress rate
employed the stresses can be solved explicitly, vide the work of Dienes [8]. Similar

calculations are performed herein, and both explicit and numerical solutions are pro-
vided.

METHOD OF ANALYSIS
Some theoretical fundamentals

We give below some basic equations describing the deformation process. The La-
grangian description is represented by

dx(1) = F(¢) - dX (n
where x(¢) and X denote the current and initial coordinates of material points, and F(r)

is the deformation gradient tensor. At any given time, 1, F(t) is a 3 x 3 matrix whose
determinant is strictly positive and hence admits the polar decomposition

F(1) = R(1) - U(r) = V(1) - R(1). (2)
In the above equation U(r) and V(¢) represent pure deformations and are referred to

as the right and left stretch tensors respectively, while R(r) is an orthogonal tensor
characterizing the rigid body rotation where

R()" = R()™!
and

R(H RO = 1. 3
It follows from (3) and (2) that

U=R"-V:-R 4

and we omit hereinafter the notation indicating the dependence of these tensors on
time. Furthermore U can be expressed as

U=Q: A -Q7, (5a)
or

A=Q -U-Q (5b)

where A is the diagonal matrix of U whose components are the principal stretch values
(eigenvalues). The entity Q is another orthogonal tensor, Q~' = Q7, with the unit
eigenvectors (principal directions) of U as columns of the matrix. It can be shown [6, 10]
(see the former reference for a detailed proof) that

InU=Q-Ink-Q". (6)
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The Eulerian description of the process is given by
dr = L dx, N
where L is the spatial velocity gradient tensor and is equal to
L=F-F'=(D+W, ®)

D is the symmetric, rate of deformation tensor and W the antisymmetric, spin tensor.
Equation (7) can be solved explicitly to reveal (1), if the components of L are constants
in the chosen time interval. In a similar manner to (5) it is formally possible to write

(6]
A=P"'"-F-P or F=P-A P, 9)

where A is the diagonal matrix of the eigenvalues of F and P the associated matrix of
the eigenvectors. Note in this case F is not symmetric and hence the eigenvalues need
not been real nor are the eigenvectors orthogonal. In Ref. [6], it is proposed that (8)
could be integrated as

E=fLm=mn
and in view of (5), {(6) and (9)
E=fLm=mF=Pwmm-rh (10)

The solution to the r.h.s. of (10} has been given in Refs. {6, 9] for finitc homogencous
deformation processes for the special case when the components of L are constants,
i.e. a homogeneous velocity field. In practice the components of L are not known
directly. Hence the components of L, in {10), are expressed in terms of the components
of F, since it is these latter quantities which are usually determined following some
deformation step. Typically this is accomplished by measuring a grid of lines which
have been previously marked on the surface of the component or workpiece.

In Ref. |6] a proposal is made for making the L matrix symmetric, and then calculating
the resulting representative strain. The technique is shown to be equivalent to splitting
up the finite deformation into a large (infinite) number of incremental steps, to calculate
at each step the representative strain increment and to sum_these for the total repre-
sentative strain. When F is symmetric, the components of L are given by the trans-
formation of a diagonal matrix whose components are the principal natural (logarithmic)
strains. This will be apparent by recognising that the r.h.s. of (10) is now identical to
(6).

SPINS OF THE STRAIN ELLIPSOIDS

Hill {4, 5] has considered the rotation of the Lagrangian and Eulerian strain ellipsoids
due to an infinitesimal deformation step superimposed on the existing stretches, denoted
by a,, a;, as. In order to be able to make a distinction between the two ellipsoids the
prior process must have been one of homogeneous deformation as opposed to pure
homogeneous deformation, i.e. pure stretch. The axes of the Lagrangian ellipsoid are
defined as being the ground state directions of the embedded orthogonal triad which
are the current axes of the Eulerian ellipsoid. An infinitesimal deformation is then
superimposed on the current Eulerian ellipsoid and the ensuing rotation calculated, i.e.
the change in orientation between the axes of the new and current ellipsoid. It is to be
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noted that the orthogonal triad which forms the axes of the new cllipsoid, was not an
orthogonal sct immediately before the increment.

As an illustration for rotation about the I-axis, Hill, op. cit., superimposes a sym-
metric deformation gradient, say dy, where

dy = ' 1 dnas (n

dn |

and all the components are referred to the 2 and 3 axes of the ellipsoid. The rotation
is calculated to first order as

a3 + o3
5 R e— d . 12
bre s 23 (12)
for a, # ax. The rate of rotation is
. a3 + a3
bip = 55— €, (13)
az — as

where €23 = €3, are components of the Eulerian rate of deformation tensor. When the
incremental deformation is not pure stretch then (13) must be augmented by the rigid
body rotation §(ea2 — €23). Similarly the rotation of the Lagrangian ellipsoid about its
own axes, due to the superposition of dy, is

(2aza3) . (2as2as)
3bL. = E‘__a%d‘flzs or &, = mizs (14)

with similar expressions for the rate of rotation about the 2 and 3 axes.
The deformation just described is that of a small strain superimposed on a large prior
deformation. If the total deformation is characterized by F, where

F=dn-a=R-U=V- R, (15)

then the rotations given in (12) and (14) can be calculated precisely. As an illustration

consider evaluating the rotation about the l-axis of the chosen reference frame. From
(15)

F= Fp2 Fan| _ |1 mza] a2 O ax My (16)
Fy; F3 n | 0 a; M2d2 A3
Define the components of the rotation tensor R, in the 2-3 plane as
cos @ —siné6
sin 6 cos 6 an
and it is then easy to show that
F3; — F33 a2z — as)
tan 0 = = . 18
Fy + F3 (a2 + ai) (18)
Thus, the rigid body rotation is small and
tan @ =0 = N2(d2 — as) (19)

(a; + a3)
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The orientation of the principal axes of the Lagrangian strain ellipse. in the 23 plane.
is calculated from the components of the stretch tensor U where

22U 2FiuFa + FaafFas)
tan 2, = T —m———— R 2
n 2dy. U = Uss  (F3: — F33) + (F32 = F3) 0

This is also a very small angle, hence

FaaFa + FaaFa
(Fi: — F33) + (F52 — F33)°

by =

(21)

which is identical to (14) if the second order quantity (F3; — F3:) is ignored. Note the
angle ¢, is measured as an anticlockwise rotation from the 02 axis. The rotation of the
Eulerian ellipse, to use Hill’s terminology. in the 2-3 plane is the sum of (19) and (21)

br = &, + 0, (22)

which to first order can be shown to be identical to (12).
Alternatively, the rotation can be found from

2V 2FnFy + FuFa)

tan 2 s = = 2 2 3 > s
& Va2 = Vas (F52 — Fi3) — (F52 — F33)

(23) -

where for small angles

FaaFa + Fy3Foa

O =L~ P = (Fia - Fh)

It will be apparent that (20) and (23) define the orientation of the eigenvectors of F’ - F
and F - F7 respectively.

CHOICE OF STRAIN AND STRAIN RATE MEASURES

A variety of deformation or strain measures can be generated from the tensors U
and V and these are usually classified as being Lagrangian and Eulerian respectively,
in description. Hill |3, 4] has proposed a general class of strain measures where the
principal values are defined as

C; = f((l,‘). Wlth f(” = { and fl(l) = l.
and f(a) is any smooth monotonic function. In particular when
fla) = (@ = H2m

the most commonly used strain measures are revealed. Hill. op cit., claims that log-
arithmic strain measures (when m = 0) can be advantageous in certain constitutive
inequalities, but points out that a number of researchers have considered that such
measures can give rise to analytical difficulties. Storen and Rice [10] adopted the log-
arithmic measure in their formulation of deformation-theory models, but concluded
that no simple relationship existed between the time rate, i.e. (In U)" and the rate of
deformation tensor D. However, Hill, op cit., had established a relationship between
(In A)" and a function of D.

We develop below a general relationship between the logarithmic strain rate and the
rate of deformation tensor. The analysis has been performed in an alternative manner
by Gurtin and Spear [7].
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From (2) and (8) it follows that

L=R-U+R-U)-(U'-R™ 24)
=R-R"+R-(U-U"): R,
likewise
L"=R-R"+R-(U'-U)-R". (25)
Now
= }L + L") (26)
=4R-(U-U"'"+U ' U R’}
and

z
|

= L - L )
JIR-(U-U'=-U"'-U)-R'1+R-R".

Similar expressions to (24)-(27) can be derived involving the left stretch tensor V. The
quantity R - R’ may be interpreted as the angular velocity of the material, see the
discussion by Dienes {8]. It is clear from (27) that, in general, the angular velocity is
distinct from the spin tensor W,

From (6) the time derivative of In U is

Y =Q- Q' U-(h-Q-Q"+Q-A-1"' Q.
hence
QA A Q=) +-Q-Q"-Q-Q"-mU. (28)

The r.h.s. of (28) can be regarded as a co-rotational rate of (In U), say (In U)", relative
to the principal axes of U. The entity Q - Q" is another skew symmetric tensor rep-

resenting the rate of rotation of the principal axes of U, i.e. the spin of the Lagrangian
ellipsoid.

It can be shown that

U-U'"=Q-Q"+(nU)-U-Q-Q"-U"", (29)
and
U'U=Q-Q"+(nU)"+U'"-Q-Q" U (30)
where
Q-Q"=-Q-Q"

It follows from (26) that

D

R-nU)° R -4F-QQ-F'-F7-Q-Q-F) g
R-(InU)®-R" - symF-Q-Q"-F™').

Similarly, we can show

D=V -sym(F-Q-Q"-F", (32)
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while
W=R-RI+R-Q-Q"-R" - unsym(F-Q-Q" -F ). (33)

In order to arrive at the result obtained by Hill [4], (6) is differentiated with respect
to time to yield

U =Q-Q-mU-(h)-Q-Q"+Q-A-A"-Q". (34)

In particular Hill, op cit., treats the rotation of the Lagrangian ellipsoid about its own
axes for the special case where they coincide with the frame of reference. Consequently

Q=1
and
InU = InA. (35)

However, the spin of the Lagrangian triad can be evaluated from Q - Q7. and as an
illustration for the spin about the I-axis

Q Q' =46, (36)

0 -1
[ ] B

where ¢, is defined in (14). Upon substituting (35) and (36) into (34) we have the
components in the 2-3 plane,

(In Az)" (In A2/A3)dy

IR D™= 10 Aa/adée (I ha)'

. (37

and (In A\2)" = Az/A2 = €23, wWhich is a component of the rate of deformation tensor D.
The r.h.s. of (37} is identical to Hill's result [4].

ROTATION AND STRESS RATES IN SIMPLE SHEAR

The deformation is shown in Fig. 1, and for a shear displacement S the deformation
gradient tensor is

I S 0
F=(01 0 (38)
0 0 1
Y
WS
Be— B
1
o] i ﬁA x

Fig. 1. The simple shear process.
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The components of the rotation tensor R are

cos® -—-sing 0O
R = [sin 6 cos 8 0], (39)
0 0 1
thercfore
_ o -1 0
Q=R-R'"=6]|I 0 0}. (40)
0 00

Note that (39) is in the same sense as the rotation defined in (17), but in the opposite
sense to that chosen by Dienes [8], when he studied the rectilinear shear problem.
From (2), (38) and (39) it follows that
tan@ = —S/2, 41

while from (20) the eigenvectors of U are obtained as

tan 2¢, = — =, (42a)

i

where the angles are measured anticlockwise from the 0X axis, see Fig. 1. The first

axis reached is the major axis of the ellipse. Likewise from (23) the eigenvectors of V
are

tan 2y = % . (42b)
Again, the angles are measured anticlockwise from the 0X axis. From (41)
-0 sec? 0 = 8§12 (43)
—(6 + 2 tan 06°) sec® 6 = §/2. (44)
For the simple shear process we can define that § = 0 and therefore
b + 2 tan 06* = 0. (45)
Similarly from (42a)
S2b, = § cos? 24, (46)
and with § = 0
26,58 + §2¢, = —28, sin 4. 47

The quantity &, is defined in (36), it is the spin of the Lagrangian ellipsoid and for
convenience the notation ¢, = Q - Q7 is adopted.
The rate of deformation tensor, D, and the spin tensor, W, are

0 820 0. 820
D=|[52 0 OjandW=|-52 0 0. (48)
0 0 0 0 0 0
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As an cxample of the stress calculation we consider a simple hypoclastic material
with the following constitutive equation

v
o = ANud) + 2ub. (49}

In the above cquation A and p are Lame's constants, 1 the identity tensor and \é an
objective stress rate. The Jaumann stress rate is defined as
o/=06-W-0+0 W, (50)
while Dicnes [8] proposed the following objective rate
G=06-Q -0+0-1 (51)
Another stress rate defined as
og¥=6¢-¢, 0+ 0P, (52)

is also adopted here, merely to ascertain the effect it will have on the resulting stresses.
If (51) is substituted into (49) we find

Gy = 0y~ 204202 = 2uDy = 0
Gi2 = G2 = 12022 + oz = 2uDia (53

622 = 622 + 2012012 = 2uD2 = 0.
The above equations can be combined to yield

d? d
——é%z—'i + ._é_’é'.l 2tan 8 + 4oy = 4p sec? 6. (54)

An identical equation would have been revealed if the sense of the rotation in (39) had
been reversed, as chosen by Dienes [8]. Furthermore, (54) reveals the same result for
o1y whether 8 or —8 is used in the equation. i

In solving (54) Dicnes, op cit., assumed that & = 0, which is not truc if § = 0, as
can be seen from (45). With 8 = 0, the tan 6 term in (54) vanishes and the equation

r
6+ FROM REF [8] ASSUMING =0
5+
4
EGN (81) OR (43)
3 t
Ol 2l EQN (s5)

.2 I L i £ L 5 £ ; L i . ¥

[ 2 3 4 5 6 7 8 9 10 11 12
SHEAR DISPLACEMENT (S)

Fig. 2. A comparison of the evolution of the shear stress for a hypoelastic solid undergoing
simple shear, based on different objective stress rates.
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can be solved explicitly [8]. As it stands the equation must be solved numerically, and
this was done in the present work. The corresponding shear stress is given by

- _ 1doy
T = 2 dB . (55)

The variation of the non-dimensional stress o>/ with § is shown in Fig. 2; also illus-
trated is the result obtained by Dienes [8] by assuming 8§ = 0.
If (50) is substituted into (49) a set of equations similar to (53) emerge namely

oy - Sﬂxz =0

Gzt 5on = Son= ps (56)

022 + S0z = 0.

Combining these equations, and noting that § = 0, the following differential equation
is obtained

d’c ts <
"‘&'}‘;—' + S‘()'“ = |.LS". (57)

The above equation can be solved explicitly, and for an initially stress free state the
solution for the stresses is [8]

T2 = | sin Sl (58)
022 = —u(l = cos S1).

Equation (58) predicts that the stresses are periodic and this is physically incorrect.
The variation of o,2/p with § is shown in Fig. 2.

It is to be noted that Nagtegaal and de Jong [11] have calculated a periodic variation
in stresses for both elastic—plastic and rigid—plastic solids undergoing rectilinear shear
based on a kinematic hardening model. The position of the centre of the yield locus
was characterised by a shift (or back stress) tensor «, and the objective rate of change
of this tensor was taken to be the Jaumann derivative. Lee er al. [12] have considered
an alternative rotation term (one not employed herein) in the objective back stress rate
as means of eliminating the oscillation in the stress components.

If (52) is combined with (49), and the same procedure leading to (54) and (57) is
followed, we obtain the differential equation

d,zc'u doy, _ 2
6. 6, 4 cot 2, + 4oy, = —8p cosec? 2¢,, (60)

which has to be solved numerically. The shear stress is obtained from

}_dﬂ'n
2 dé,

T2 = =~

(61)

The variation of o,2/p with § is demonstrated in Fig. 2.

Rather than use the spin of the Lagrangian ellipsoid in (52), which finally leads to
(60) and (61), the spin of the Eulerian ellipsoid could have been adopted. The Eulerian
spin tensor, defined hereinafter as ¢, can be evaluated from (42b} in the like manner
to the Lagrangian spin, ¢,. The solution of the stresses follows in an identical fashion,
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and instead of (60) and (61) the following differential equations are determined

d20’|1 _ 99’1_1

GoT oy Ol e + 4o = Bu cosec’ 2y, (62)

and

O = —

doy,
_ 6
dor (63)

LS R

which have to be solved numerically. It transpires that the variation of ;2/p with S is
exactly the same as that obtained when using the Lagrangian spin. In the present
problem, the Lagrangian spin, ¢, is equal and opposite to the Eulerian spin, .. The
Lagrangian ellipse rotates anticlockwise and the Eulerian ellipse rotates clockwise. The
direct stress components o, and o5, are not the same when the Lagrangian spin and
Eulerian spin are employed in turn in (53). As will be evident from (53), there is a
reversal in the sign of the direct stress components because ¢ and ¢, are equal and
opposite. However, as mentioned above, o), remains unaltered.

It is evident from Fig. 2 that the proposed objective stress rates have a significant
influence on the evolution of the stresses. Only the Jaumann rate leads to an oscillation
in the shear stress, and as already remarked this is physically unacceptable. However,
the oscillation does not begin until a relatively large shear displacement has been at-
tained. At small displacements all the objective rates give essentially the same shear
stress. In the present problem the objective rate involving the spin of either the Eulerian
or Lagrangian ellipsoid results in a shear stress variation that follows very closely the
shear stress derived using the Jaumann rate, up to a shear displacement in excess of
unity. The utility of the various stress rates adopted herein for analyzing problems
involving large strain and/or large rotations awaits further demonstration.
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